relativitas waktu dan al qur'an

Merupakan rincian dari hubungan antara relativitas waktu yang telah dirincikan dalam alqur'an dan teori moderen...!!!.

Air Terjun Api..!!

Fenomena alam yang mempertunjukan keindahan air terjun yang nampak seperti lava yang jatuh dari ketinggian..!!.

NASA Ungkap Evolusi Badai Matahari

NASA berhasil mengungkap evolusi badai Matahari atau lebih tepatnya lontaran massa korona (CME), mulai dari pembentukannya di korona Matahari hingga sampai ke Bumi.

Dua Matahari Terbenam Bersama di Planet Kepler 16 B

Peristiwa mirip fiksi ilmiah itu terpantau peneliti yang melakukan pengamtan dari pesawat antariksa Kepler NASA. Peneliti itu mendeteksi sebuah planet yang mengorbit dua bintang.

Setop Pakai Lensa Kontak Saat Tidur!

Sebagian besar lensa kontak yang dipakai sehari-hari harus dibersihkan setiap malam sebelum tidur. Bahkan, lensa kontak semestinya tidak dipakai tidur.

SEMOGA BERMANFAAT.....!!!!!

Minggu, 15 Agustus 2010

TERMODINAMIKA

Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana banyak hubungan termodinamika berasal.

Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu proses reaksi berlangsung). Karena alasan ini, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super pelan". Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak-setimbang.

Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik.

Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecual perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini tentang termodinamika benda hitam

Konsep dasar dalam termodinamika

Pengabstrakan dasar atas termodinamika adalah pembagian dunia menjadi sistem dibatasi oleh kenyataan atau ideal dari batasan. Sistem yang tidak termasuk dalam pertimbangan digolongkan sebagai lingkungan. Dan pembagian sistem menjadi subsistem masih mungkin terjadi, atau membentuk beberapa sistem menjadi sistem yang lebih besar. Biasanya sistem dapat diberikan keadaan yang dirinci dengan jelas yang dapat diuraikan menjadi beberapa parameter.

Sistem termodinamika

Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.

Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:

  • sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.
  • sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkan sebagai sifat pembatasnya:
    • pembatas adiabatik: tidak memperbolehkan pertukaran panas.
    • pembatas rigid: tidak memperbolehkan pertukaran kerja.
  • sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.

Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.

Keadaan termodinamika

Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem).

Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.

Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.

Pengembangan hubungan antara properti dari keadaan yang berlainan dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut.

Hukum-hukum Dasar Termodinamika

Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:

  • Hukum Awal (Zeroth Law) Termodinamika
Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.
  • Hukum Pertama Termodinamika
Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.
  • Hukum kedua Termodinamika
Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.
  • Hukum ketiga Termodinamika
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.
Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.

Usaha Luar

Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.

W = pV= p(V2V1)

Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

pers01Tekanan dan volume dapat diplot dalam grafik pV. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik pV, usaha yang dilakukan gas merupakan luas daerah di bawah grafik pV. hal ini sesuai dengan operasi integral yang ekuivalen dengan luas daerah di bawah grafik.

fig2004Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < V1 dan usaha gas bernilai negatif.

Energi Dalam

Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik.

Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai

untuk gas monoatomik

pers02

untuk gas diatomik

pers03

Dimana U adalah perubahan energi dalam gas, n adalah jumlah mol gas, R adalah konstanta umum gas (R = 8,31 J mol−1 K−1, danT adalah perubahan suhu gas (dalam kelvin).

Hukum I Termodinamika

Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi.

Gambar

Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai

Q = W + U

Dimana Q adalah kalor, W adalah usaha, dan U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.

Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam U.

Proses Isotermik

Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).

Proses isotermik dapat digambarkan dalam grafik pV di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai

pers04Dimana V2 dan V1 adalah volume akhir dan awal gas.

isothermal_process

Proses Isokhorik

Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV.

QV = U

Proses Isobarik

Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = pV). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku

pers05Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan

QV =U

Dari sini usaha gas dapat dinyatakan sebagai

W = QpQV

Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).

diag11

Proses Adiabatik

Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = U).

Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai

pers06Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).

341px-adiabaticsvg

Proses adiabatik dapat digambarkan dalam grafik pV dengan bentuk kurva yang mirip dengan grafik pV pada proses isotermik namun dengan kelengkungan yang lebih curam.

Selasa, 03 Agustus 2010

gerak parabola

Pengantar

Pada pokok bahasan Gerak Lurus, baik GLB, GLBB dan GJB, kita telah membahas gerak benda dalam satu dimensi, ditinjau dari perpindahan, kecepatan dan percepatan. Kali ini kita mempelajari gerak dua dimensi di dekat permukaan bumi yang sering kita jumpai dalam kehidupan sehari-hari.

Pernakah anda menonton pertandingan sepak bola ? mudah-mudahan pernah walaupun hanya melalui Televisi. Gerakan bola yang ditendang oleh para pemain sepak bola kadang berbentuk melengkung. Mengapa bola bergerak dengan cara demikian ?

Selain gerakan bola sepak, banyak sekali contoh gerakan peluru/parabola yang kita jumpai dalam kehidupan sehari-hari. Diantaranya adalah gerak bola volly, gerakan bola basket, bola tenis, bom yang dijatuhkan, peluru yang dtembakkan, gerakan lompat jauh yang dilakukan atlet dan sebagainya. Anda dapat menambahkan sendiri. Apabila diamati secara saksama, benda-benda yang melakukan gerak peluru selalu memiliki lintasan berupa lengkungan dan seolah-olah dipanggil kembali ke permukaan tanah (bumi) setelah mencapai titik tertinggi. Mengapa demikian ?

Benda-benda yang melakukan gerakan peluru dipengaruhi oleh beberapa faktor. Pertama, benda tersebut bergerak karena ada gaya yang diberikan. Mengenai Gaya, selengkapnya kita pelajari pada pokok bahasan Dinamika (Dinamika adalah ilmu fisika yang menjelaskan gaya sebagai penyebab gerakan benda dan membahas mengapa benda bergerak demikian). Pada kesempatan ini, kita belum menjelaskan bagaimana proses benda-benda tersebut dilemparkan, ditendang dan sebagainya. Kita hanya memandang gerakan benda tersebut setelah dilemparkan dan bergerak bebas di udara hanya dengan pengaruh gravitasi. Kedua, seperti pada Gerak Jatuh Bebas, benda-benda yang melakukan gerak peluru dipengaruhi oleh gravitasi, yang berarah ke bawah (pusat bumi) dengan besar g = 9,8 m/s2. Ketiga, hambatan atau gesekan udara. Setelah benda tersebut ditendang, dilempar, ditembakkan atau dengan kata lain benda tersebut diberikan kecepatan awal hingga bergerak, maka selanjutnya gerakannya bergantung pada gravitasi dan gesekan alias hambatan udara. Karena kita menggunakan model ideal, maka dalam menganalisis gerak peluru, gesekan udara diabaikan.

Pengertian Gerak Peluru

Gerak peluru merupakan suatu jenis gerakan benda yang pada awalnya diberi kecepatan awal lalu menempuh lintasan yang arahnya sepenuhnya dipengaruhi oleh gravitasi.

Karena gerak peluru termasuk dalam pokok bahasan kinematika (ilmu fisika yang membahas tentang gerak benda tanpa mempersoalkan penyebabnya), maka pada pembahasan ini, Gaya sebagai penyebab gerakan benda diabaikan, demikian juga gaya gesekan udara yang menghambat gerak benda. Kita hanya meninjau gerakan benda tersebut setelah diberikan kecepatan awal dan bergerak dalam lintasan melengkung di mana hanya terdapat pengaruh gravitasi.

Mengapa dikatakan gerak peluru ? kata peluru yang dimaksudkan di sini hanya istilah, bukan peluru pistol, senapan atau senjata lainnya. Dinamakan gerak peluru karena mungkin jenis gerakan ini mirip gerakan peluru yang ditembakkan.

Jenis-jenis Gerak Parabola

Dalam kehidupan sehari-hari terdapat beberapa jenis gerak parabola.

Pertama, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah. Dalam kehidupan sehari-hari terdapat banyak gerakan benda yang berbentuk demikian. Beberapa di antaranya adalah gerakan bola yang ditendang oleh pemain sepak bola, gerakan bola basket yang dilemparkan ke ke dalam keranjang, gerakan bola tenis, gerakan bola volly, gerakan lompat jauh dan gerakan peluru atau rudal yang ditembakan dari permukaan bumi.

Kedua, gerakan benda berbentuk parabola ketika diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal, sebagaimana tampak pada gambar di bawah. Beberapa contoh gerakan jenis ini yang kita temui dalam kehidupan sehari-hari, meliputi gerakan bom yang dijatuhkan dari pesawat atau benda yang dilemparkan ke bawah dari ketinggian tertentu.

Ketiga, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dari ketinggian tertentu dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah.

Menganalisis Gerak Parabola

Bagaimana kita menganalisis gerak peluru ? Eyang Galileo telah menunjukan jalan yang baik dan benar. Beliau menjelaskan bahwa gerak tersebut dapat dipahami dengan menganalisa komponen-komponen horisontal dan vertikal secara terpisah. Gerak peluru adalah gerak dua dimensi, di mana melibatkan sumbu horisontal dan vertikal. Jadi gerak parabola merupakan superposisi atau gabungan dari gerak horisontal dan vertikal. Kita sebut bidang gerak peluru sebagai bidang koordinat xy, dengan sumbu x horisontal dan sumbu y vertikal. Percepatan gravitasi hanya bekerja pada arah vertikal, gravitasi tidak mempengaruhi gerak benda pada arah horisontal.

Percepatan pada komponen x adalah nol (ingat bahwa gerak peluru hanya dipengaruhi oleh gaya gravitasi. Pada arah horisontal atau komponen x, gravitasi tidak bekerja). Percepatan pada komponen y atau arah vertikal bernilai tetap (g = gravitasi) dan bernilai negatif /-g (percepatan gravitasi pada gerak vertikal bernilai negatif, karena arah gravitasi selalu ke bawah alias ke pusat bumi).

Gerak horisontal (sumbu x) kita analisis dengan Gerak Lurus Beraturan, sedangkan Gerak Vertikal (sumbu y) dianalisis dengan Gerak Jatuh Bebas.

Untuk memudahkan kita dalam menganalisis gerak peluru, mari kita tulis kembali persamaan Gerak Lurus Beraturan (GLB) dan Gerak Jatuh Bebas (GJB).

Sebelum menganalisis gerak parabola secara terpisah, terlebih dahulu kita amati komponen Gerak Peluru secara keseluruhan.

Pertama, gerakan benda setelah diberikan kecepatan awal dengan sudut teta terhadap garis horisontal.

Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan v0y merupakan kecepatan awal pada sumbu y. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x. Pada titik tertinggi lintasan gerak benda, kecepatan pada arah vertikal (vy) sama dengan nol.

Kedua, gerakan benda setelah diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal.

Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan Kecepatan awal pada sumbu vertikal (voy) = 0. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x.

Menganalisis Komponen Gerak Parabola secara terpisah

Sekarang, mari kita turunkan persamaan untuk Gerak Peluru. Kita nyatakan seluruh hubungan vektor untuk posisi, kecepatan dan percepatan dengan persamaan terpisah untuk komponen horisontal dan vertikalnya. Gerak peluru merupakan superposisi atau penggabungan dari dua gerak terpisah tersebut

Komponen kecepatan awal

Terlebih dahulu kita nyatakan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y.

Catatan : gerak peluru selalu mempunyai kecepatan awal. Jika tidak ada kecepatan awal maka gerak benda tersebut bukan termasuk gerak peluru. Walaupun demikian, tidak berarti setiap gerakan yang mempunyai kecepatan awal termasuk gerak peluru

Karena terdapat sudut yang dibentuk, maka kita harus memasukan sudut dalam perhitungan kecepatan awal. Mari kita turunkan persamaan kecepatan awal untuk gerak horisontal (v0x) dan vertikal (v0y) dengan bantuan rumus Sinus, Cosinus dan Tangen. Dipahami dulu persamaan sinus, cosinus dan tangen di bawah ini.

Berdasarkan bantuan rumus sinus, cosinus dan tangen di atas, maka kecepatan awal pada bidang horisontal dan vertikal dapat kita rumuskan sebagai berikut :

Keterangan : v0 adalah kecepatan awal, v0x adalah kecepatan awal pada sumbu x, v0y adalah kecepatan awal pada sumbu y, teta adalah sudut yang dibentuk terhadap sumbu x positip.

Kecepatan dan perpindahan benda pada arah horisontal

Kita tinjau gerak pada arah horisontal atau sumbu x. Sebagaimana yang telah dikemukakan di atas, gerak pada sumbu x kita analisis dengan Gerak Lurus Beraturan (GLB). Karena percepatan gravitasi pada arah horisontal = 0, maka komponen percepatan ax = 0. Huruf x kita tulis di belakang a (dan besaran lainnya) untuk menunjukkan bahwa percepatan (atau kecepatan dan jarak) tersebut termasuk komponen gerak horisontal atau sumbu x. Pada gerak peluru terdapat kecepatan awal, sehingga kita gantikan v dengan v0.

Dengan demikian, kita akan mendapatkan persamaan Gerak Peluru untuk sumbu x :

Keterangan : vx adalah kecepatan gerak benda pada sumbu x, v0x adalah kecepatan awal pada sumbu x, x adalah posisi benda, t adalah waktu tempuh, x0 adalah posisi awal. Jika pada contoh suatu gerak peluru tidak diketahui posisi awal, maka silahkan melenyapkan x0.

Perpindahan horisontal dan vertikal

Kita tinjau gerak pada arah vertikal atau sumbu y. Untuk gerak pada sumbu y alias vertikal, kita gantikan x dengan y (atau h = tinggi), v dengan vy, v0 dengan voy dan a dengan -g (gravitasi). Dengan demikian, kita dapatkan persamaan Gerak Peluru untuk sumbu y :

Keterangan : vy adalah kecepatan gerak benda pada sumbu y alias vertikal, v0y adalah kecepatan awal pada sumbu y, g adalah gravitasi, t adalah waktu tempuh, y adalah posisi benda (bisa juga ditulis h), y0 adalah posisi awal.

Berdasarkan persamaan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y yang telah kita turunkan di atas, maka kita dapat menulis persamaan Gerak Peluru secara lengkap sebagai berikut :

Setelah menganalisis gerak peluru secara terpisah, baik pada komponen horisontal alias sumbu x dan komponen vertikal alias sumbu y, sekarang kita menggabungkan kedua komponen tersebut menjadi satu kesatuan. Hal ini membantu kita dalam menganalisis Gerak Peluru secara keseluruhan, baik ditinjau dari posisi, kecepatan dan waktu tempuh benda. Pada pokok bahasan Vektor dan Skalar telah dijelaskan teknik dasar metode analitis. Sebaiknya anda mempelajarinya terlebih dahulu apabila belum memahami dengan baik.

Persamaan untuk menghitung posisi dan kecepatan resultan dapat dirumuskan sebagai berikut.

Pertama, vx tidak pernah berubah sepanjang lintasan, karena setelah diberi kecepatan awal, gerakan benda sepenuhnya bergantung pada gravitasi. Nah, gravitasi hanya bekerja pada arah vertikal, tidak horisontal. Dengan demikian vx bernilai tetap.

Kedua, pada titik tertinggi lintasan, kecepatan gerak benda pada bidang vertikal alias vy = 0. pada titik tertinggi, benda tersebut hendak kembali ke permukaan tanah, sehingga yang bekerja hanya kecepatan horisontal alias vx, sedangkan vy bernilai nol. Walaupun kecepatan vertikal (vy) = 0, percepatan gravitasi tetap bekerja alias tidak nol, karena benda tersebut masih bergerak ke permukaan tanah akibat tarikan gravitasi. jika gravitasi nol maka benda tersebut akan tetap melayang di udara, tetapi kenyataannya tidak teradi seperti itu.

Ketiga, kecepatan pada saat sebelum menyentuh lantai biasanya tidak nol.

Pembuktian Matematis Gerak Peluru = Parabola

Sekarang Gurumuda ingin menunjukkan bahwa jalur yang ditempuh gerak peluru merupakan sebuah parabola, jika kita mengabaikan hambatan udara dan menganggap bahwa gravitasi alias g bernilai tetap. Untuk menunjukkan hal ini secara matematis, kita harus mendapatkan y sebagai fungsi x dengan menghilangkan/mengeliminasi t (waktu) di antara dua persamaan untuk gerak horisontal dan vertikal, dan kita tetapkan x0 = y0 = 0.

Kita subtitusikan nilai t pada persamaan 1 ke persamaan 2

Dari persamaan ini, tampak bahwa y merupakan fungsi dari x dan mempunyai bentuk umum

y = ax – bx2

Di mana a dan b adalah konstanta untuk gerak peluru tertentu. Persamaan ini merupakan fungsi parabola dalam matematika.

Petunjuk Penyelesaian Masalah-Soal Untuk Gerak Peluru

Pertama, baca dengan teliti dan gambar sebuah diagram untuk setiap soal yang diberikan. tapi jika otakmu mirip Eyang Einstein, gambarkan saja diagram tersebut dalam otak.

Kedua, buat daftar besaran yang diketahui dan tidak diketahui.

Ketiga, analisis gerak horisontal (sumbu x) dan vertikal (sumbu y) secara terpisah. Jika diketahui kecepatan awal, anda dapat menguraikannya menjadi komponen-konpenen x dan y.

Keempat, berpikirlah sejenak sebelum menggunakan persamaan-persamaan. Gunakan persamaan yang sesuai, bila perlu gabungkan beberapa persamaan jika dibutuhkan.

Contoh Soal 1 :

David Bechkam menendang bola dengan sudut 30o terhadap sumbu x positif dengan kecepatan 20 m/s. Anggap saja bola meninggalkan kaki Beckham pada ketinggian permukaan lapangan. Jika percepatan gravitasi = 10 m/s2, hitunglah :

a) Tinggi maksimum

b) waktu tempuh sebelum bola menyentuh tanah

c) jarak terjauh yang ditempuh bola sebelum bola tersebut mencium tanah

d) kecepatan bola pada tinggi maksimum

e) percepatan bola pada ketinggian maksimum

Panduan Jawaban :

Soal ini terkesan sulit karena banyak yang ditanyakan. Sebenarnya gampang, jika kita melihat dan mengerjakannya satu persatu-satu.

Karena diketahui kecepatan awal, maka kita dapat menghitung kecepatan awal untuk komponen horisontal dan vertikal.

a) Tinggi maksimum (y)

Jika ditanyakan ketinggian maksimum, maka yang dimaksudkan adalah posisi benda pada sumbu vertikal (y) ketika benda berada pada ketinggian maksimum alias ketinggian puncak. Karena kita menganggap bola bergerak dari permukaan tanah, maka yo = 0. Kita tulis persamaan posisi benda pada gerak vertikal

Bagaimana kita tahu kapan bola berada pada ketinggian maksimum ? untuk membantu kita, ingat bahwa pada ketinggian maksimum hanya bekerja kecepatan horisontal (vx) , sedangkan kecepatan vertikal (vy) = 0. Karena vy = 0 dan percepatan gravitasi diketahui, maka kita gunakan salah satu gerak vertikal di bawah ini, untuk mengetahui kapan bola berada pada tinggian maksimum.

Berdasarkan perhitungan di atas, bola mencapai ketinggian maksimum setelah bergerak 1 sekon. Kita masukan nilai t ini pada persamaan y

Ketinggian maksimum yang dicapai bola adalah 5 meter. Gampang khan ?

b) Waktu tempuh bola sebelum menyentuh permukaan tanah

Ketika menghitung ketinggian maksimum, kita telah mengetahui waktu yang diperlukan bola untuk mencapai ketinggian maksimum. Sekarang, yang ditanyakan adalah waktu tempuh bola sebelum menyentuh permukaan tanah. Yang dimaksudkan di sini adalah waktu tempuh total ketika benda melakukan gerak peluru.

Untuk menyelesaikan soal ini, hal pertama yang perlu kita ingat adalah ketika menyentuh permukaan tanah, ketinggian bola dari permukaan tanah (y) = 0. sekali lagi ingat juga bahwa kita menanggap bola bergerak dari permukaan tanah, sehingga posisi awal bola alias y0 = 0.

Sekarang kita tuliskan persamaan yang sesuai, yaitu

Waktu tempuh total adalah 2 sekon.

Sebenarnya kita juga bisa menggunakan cara cepat. Pada bagian a), kita sudah menghitung waku ketika benda mencapai ketinggian maksimum. Nah, karena lintasan gerak peluru berbentuk parabola, maka kita bisa mengatakan waktu tempuh benda untuk mencapai ketinggian maksimum merupakan setengah waktu tempuh total. Dengan kata lain, ketika benda berada pada ketinggian maksimum, maka benda tersebut telah melakukan setengah dari keseluruhan gerakan. Cermati gambar di bawah ini sehingga anda tidak kebingungan. Dengan demikian, kita bisa langsung mengalikan waktu tempuh bola ketika mencapai ketinggian maksimum dengan 2, untuk memperoleh waktu tempuh total.

c) Jarak terjauh yang ditempuh bola sebelum bola tersebut mencium tanah

Jika ditanya jarak tempuh total, maka yang dimaksudkan di sini adalah posisi akhir benda pada arah horisontal (atau s pada gambar di atas). Soal ini gampang, tinggal dimasukkan saja nilainya pada persamaan posisi benda untuk gerak horisontal atau sumbu x. karena kita menghitung jarak terjauh, maka waktu (t) yang digunakan adalah waktu tempuh total.

d) kecepatan bola pada tinggi maksimum

Pada titik tertinggi, tidak ada komponen vertikal dari kecepatan. Hanya ada komponen horisontal (yang bernilai tetap selama bola melayang di udara). Dengan demikian, kecepatan bola pada pada tinggi maksimum adalah :

e) percepatan bola pada ketinggian maksimum

Pada gerak peluru, percepatan yang bekerja adalah percepatan gravitasi yang bernilai tetap, baik ketika bola baru saja ditendang, bola berada di titik tertinggi dan ketika bola hendak menyentuh permukaan tanah. Percepatan gravitasi (g) berapa ? jawab sendiri ya…

Contoh soal 2 :

Seorang pengendara sepeda motor yang sedang mabuk mengendarai sepeda motor melewati tepi sebuah jurang yang landai. Tepat pada tepi jurang kecepatan motornya adalah 10 m/s. Tentukan posisi sepeda motor tersebut, jarak dari tepi jurang dan kecepatannya setelah 1 detik.

Panduan Jawaban :

Kita memilih titik asal koordinat pada tepi jurang, di mana xo = yo = 0. Kecepatan awal murni horisontal (tidak ada sudut), sehingga komponen-komponen kecepatan awal adalah :

soal gerak parabola-1

Di mana letak sepeda motor setelah 1 detik ? setelah 1 detik, posisi sepeda motor dan pengendaranya pada koordinat x dan y adalah sbb (xo dan yo bernilai nol) :

x = xo + vox t = (10 m/s)(1 s) = 10 m

y = yo + (vo sin teta) t – ½ gt2

y = – ½ gt2

y = – ½ (10 m/s2)(1 s)2

y = – 5 m

Nilai negatif menunjukkan bahwa motor tersebut berada di bawah titik awalnya.

soal gerak parabola-2

Berapa jarak motor dari titik awalnya ?

Berapa kecepatan motor pada saat t = 1 s ?

vx = vox = 10 m/s

vy = -gt = -(10 m/s2)(1 s) = -10 m/s

soal gerak parabola-3

soal gerak parabola-4

Setelah bergerak 1 sekon, sepeda motor bergerak dengan kecepatan 14,14 m/s dan berada pada 45o terhadap sumbu x positif.

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

Selasa, 22 Juni 2010

DAYA

DAYA adalah usaha atau energi yang dilakukan per satuan waktu.

P = W/t = F v (GLB)
P = Ek/t (GLBB)

Satuan daya : 1 watt = 1 Joule/det = 107 erg/det
Dimensi daya : [P] = MLT2T-3

Contoh:

Seorang bermassa 60 kg menaiki tangga yang tingginya 15 m dalam waktu 2 menit. Jika g = 10 m/det2, berapa daya yang dikeluarkan orang tersebut?

Jawab:

P = W/t = mgh/t = 60.10.15/2.60 = 75 watt.

usaha dan energi

Jika sebuah benda menempuh jarak sejauh S akibat gaya F yang bekerja pada benda tersebut maka dikatakan gaya itu melakukan usaha, dimana arah gaya F harus sejajar dengan arah jarak tempuh S.
USAHA adalah hasil kali (dot product) antara gaya den jarak yang ditempuh.


W = F S = |F| |S| cos q

q = sudut antara F dan arah gerak


Satuan usaha/energi : 1 Nm = 1 Joule = 107 erg

Dimensi usaha energi: 1W] = [El = ML2T-2

Kemampuan untuk melakukan usaha menimbulkan suatu ENERGI (TENAGA).

Energi dan usaha merupakan besaran skalar.

Beberapa jenis energi di antaranya adalah:

1. ENERGI KINETIK (Ek)

Ek trans = 1/2 m v2

Ek rot = 1/2 I w2

m = massa
v = kecepatan
I = momen inersia
w = kecepatan sudut


2. ENERGI POTENSIAL (Ep)

Ep = m g h

h = tinggi benda terhadap tanah


3. ENERGI MEKANIK (EM)

EM = Ek + Ep

Nilai EM selalu tetap/sama pada setiap titik di dalam lintasan suatu benda.

Pemecahan soal fisika, khususnya dalam mekanika, pada umumnya didasarkan pada HUKUM KEKEKALAN ENERGI, yaitu energi selalu tetap tetapi bentuknya bisa berubah; artinya jika ada bentuk energi yang hilang harus ada energi bentuk lain yang timbul, yang besarnya sama dengan energi yang hilang tersebut.

Ek + Ep = EM = tetap

Ek1 + Ep1 = Ek2 + Ep2


PRINSIP USAHA-ENERGI

Jika pada peninjauan suatu soal, terjadi perubahan kecepatan akibat gaya yang bekerja pada benda sepanjang jarak yang ditempuhnya, maka prinsip usaha-energi berperan penting dalam penyelesaian soal tersebut

W tot = DEk � S F.S = Ek akhir - Ek awal

W tot = jumlah aljabar dari usaha oleh masing-masing gaya
= W1 + W2 + W3 + .......

D Ek = perubahan energi kinetik = Ek akhir - Ek awal



ENERGI POTENSIAL PEGAS (Ep)

Ep = 1/2 k D x2 = 1/2 Fp Dx

Fp = - k Dx


Dx = regangan pegas
k = konstanta pegas
Fp = gaya pegas

Tanda minus (-) menyatakan bahwa arah gaya Fp berlawanan arah dengan arah regangan x.

2 buah pegas dengan konstanta K1 dan K2 disusun secara seri dan paralel:
seri paralel
1 = 1 + 1
Ktot K1 K2
Ktot = K1 + K2

Note: Energi potensial tergantung tinggi benda dari permukaan bumi. Bila jarak benda jauh lebih kecil dari jari-jari bumi, maka permukaan bumi sebagai acuan pengukuran. Bila jarak benda jauh lebih besar atau sama dengan jari-jari bumi, make pusat bumi sebagai acuan.



Contoh:

1. Sebuah palu bermassa 2 kg berkecepatan 20 m/det. menghantam sebuah paku, sehingga paku itu masuk sedalam 5 cm ke dalam kayu. Berapa besar gaya tahanan yang disebabkan kayu ?

Jawab:

Karena paku mengalami perubahan kecepatan gerak sampai berhenti di dalam kayu, make kita gunakan prinsip Usaha-Energi:

F. S = Ek akhir - Ek awal

F . 0.05 = 0 - 1/2 . 2(20)2

F = - 400 / 0.05 = -8000 N

(Tanda (-) menyatakan bahwa arah gaya tahanan kayu melawan arah gerak paku ).

2. Benda 3 kg bergerak dengan kecepatan awal 10 m/s pada sebuah bidang datar kasar. Gaya sebesar 20�5 N bekerja pada benda itu searah dengan geraknya dan membentuk sudut dengan bidang datar (tg a = 0.5), sehingga benda mendapat tambahan energi 150 joule selama menempuh jarak 4m.
Hitunglah koefisien gesek bidang datar tersebut ?

Jawab:
Fx = F cos a = 20�5 = 40 N

Fy = F sin a = 20�5 . 1�5 = 20 N

S Fy = 0 (benda tidak bergerak pada arah y)

Fy + N = w � N = 30 - 20 = 10 N

Gunakan prinsip Usaha-Energi

S Fx . S = Ek

(40 - f) 4 = 150 � f = 2.5 N

3. Sebuah pegas agar bertambah panjang sebesar 0.25 m membutuhkan gaya sebesar 18 Newton. Tentukan konstanta pegas dan energi potensial pegas !

Jawab:

Dari rumus gaya pegas kita dapat menghitung konstanta pegas:

Fp = - k Dx � k = Fp /Dx = 18/0.25 = 72 N/m

Energi potensial pegas:

Ep = 1/2 k (D x)2 = 1/2 . 72 (0.25)2 = 2.25 Joule

hukum newton

HUKUM NEWTON I

HUKUM NEWTON I disebut juga hukum kelembaman (Inersia).
Sifat lembam benda adalah sifat mempertahankan keadaannya, yaitu keadaan tetap diam atau keaduan tetap bergerak beraturan.

DEFINISI HUKUM NEWTON I :
Setiap benda akan tetap bergerak lurus beraturan atau tetap dalam keadaan diam jika tidak ada resultan
gaya (F) yang bekerja pada benda itu, jadi:

S F = 0 a = 0 karena v=0 (diam), atau v= konstan (GLB)



HUKUM NEWTON II

a = F/m

S F = m a

S F = jumlah gaya-gaya pada benda
m = massa benda
a = percepatan benda

Rumus ini sangat penting karena pada hampir semna persoalan gerak {mendatar/translasi (GLBB) dan melingkar (GMB/GMBB)} yang berhubungan dengan percepatan den massa benda dapat diselesaikan dengan rumus tersebut.



HUKUM NEWTON III

DEFINISI HUKUM NEWTON III:

Jika suatu benda mengerjakan gaya pada benda kedua maka benda kedua tersebut mengerjakan juga gaya pada benda pertama, yang besar gayanya = gaya yang diterima tetapi berlawanan arah. Perlu diperhatikan bahwa kedua gaya tersebut harus bekerja pada dua benda yang berlainan.
F aksi = - F reaksi

Kamis, 17 Juni 2010

HUKUM OHM

Hukum Ohm adalah suatu pernyataan bahwa besar arus listrik yang mengalir melalui sebuah penghantar selalu berbanding lurus dengan beda potensial yang diterapkan kepadanya. Sebuah benda penghantar dikatakan mematuhi hukum Ohm apabila nilai resistansinya tidak bergantung terhadap besar dan polaritas beda potensial yang dikenakan kepadanya. Walaupun pernyataan ini tidak selalu berlaku untuk semua jenis penghantar, namun istilah "hukum" tetap digunakan dengan alasan sejarah.
Secara matematis hukum Ohm diekspresikan dengan persamaan:
V = I R\
dimana I adalah arus listrik yang mengalir pada suatu penghantar dalam satuan Ampere, V adalah tegangan listrik yang terdapat pada kedua ujung penghantar dalam satuan volt, dan R adalah nilai hambatan listrik (resistansi) yang terdapat pada suatu penghantar dalam satuan ohm.
Hukum ini dicetuskan oleh Georg Simon Ohm, seorang fisikawan dari Jerman pada tahun 1825 dan dipublikasikan pada sebuah paper yang berjudul The Galvanic Circuit Investigated Mathematically pada tahun 1827.

HUKUM KIRCHOFF

HUKUM KIRCHOFF 1

Di pertengahan abad 19 Gustav Robert Kirchoff (1824 – 1887) menemukan cara untuk menentukan arus listrik pada rangkaian bercabang yang kemudian di kenal dengan Hukum Kirchoff. Hukum ini berbunyi “ Jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan”. Yang kemudian di kenal sebagai hukum Kirchoff I. Secara matematis dinyatakan

Bila digambarkan dalam bentuk rangkaian bercabang maka akan diperoleh sebagai berikut::

HUKUM KIRCHOFF 2

Hukum Kirchoff secara keseluruhan ada 2, dalam sub ini akan dibahas tentang hukum kirchoff 2. Hukum Kirchoff 2 dipakai untuk menentukan kuat arus yang mengalir pada rangkaian bercabang dalam keadaan tertutup (saklar dalam keadaan tertutup).
Perhatikan gambar berikut!
Hukum Kirchoff 2 berbunyi : ” Dalam rangkaian tertutup, Jumlah aljabbar GGL (E) dan jumlah penurunan potensial sama dengan nol”. Maksud dari jumlah penurunan potensial sama dengan nol adalah tidak ada energi listrik yang hilang dalam rangkaian tersebut, atau dalam arti semua energi listrik bisa digunakan atau diserap.

Dari gambar diatas kuat arus yang mengalir dapat ditentukan dengan menggunakan beberapa aturan sebagai berikut :

  • Tentukan arah putaran arusnya untuk masing-masing loop.
  • Arus yang searah dengan arah perumpamaan dianggap positif.
  • Arus yang mengalir dari kutub negatif ke kutup positif di dalam elemen dianggap positif.
  • Pada loop dari satu titik cabang ke titik cabang berikutnya kuat arusnya sama.
  • Jika hasil perhitungan kuat arus positif maka arah perumpamaannya benar, bila negatif berarti arah arus berlawanan dengan arah pada perumpamaan.

Senin, 07 Juni 2010

Rumus trigonometri


PENJUMLAHAN DUA SUDUT
(a + b)

sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b
1 - tg2a


SELISIH DUA SUDUT
(a - b)

sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b ) = tg a - tg b
1 + tg2a


SUDUT RANGKAP

sin 2
a = 2 sin a cos a
cos 2
a = cos2a - sin2 a
= 2 cos2
a - 1
= 1 - 2 sin2
a
tg 2
a = 2 tg 2a
1 - tg2
a
sin
a cos a = ½ sin 2a
cos2
a = ½(1 + cos 2a)
sin2
a = ½ (1 - cos 2a)

Secara umum :

sin n
a = 2 sin ½na cos ½na
cos n
a = cos2 ½na - 1
= 2 cos2 ½n
a - 1
= 1 - 2 sin2 ½n
a
tg n
a = 2 tg ½na
1 - tg2 ½n
a

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x -
a)


a cos x + b sin x = K cos (x-
a)

dengan :
K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut


I
II
III
IV
a
+
-
-
+
b
+
+
-
-

keterangan :
a = koefisien cos x
b = koefisien sin x

SEMOGA BERMANFAAT.....!!!!!

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More